A best proximity point theorem for special generalized proximal β-quasi contractive mappings
نویسندگان
چکیده
منابع مشابه
Best proximity point theorems for generalized α-β-proximal quasi-contractive mappings
*Correspondence: [email protected] Department of Mathematics and Computer Science, Institut National Des Sciences Appliquée et de Technologie de Tunis, Carthage University, Centre Urbain Nord BP 676, Tunis, 1080, Tunisia Abstract Herein, we search for some best proximity point results for a novel class of non-self-mappings T : A−→ B called generalized proximal α-β-quasi-contractive. We illus...
متن کاملBest Proximity Point Theorems for F -contractive Non-self Mappings
In this article, we prove the existence of a best proximity point for F contractive nonself mappings and state some results in the complete metric spaces. Also we define two kinds of F proximal contraction and extend some best proximity theorems and improve the recent results. 2010 Mathematics Subject Classification: 46N40; 47H10; 54H25; 46T99
متن کاملBest Proximity Points for Generalized α-ψ-Proximal Contractive Type Mappings
LetA andB be two nonempty subsets of ametric space (X, d). An element x ∈ A is said to be a fixed point of a given map T : A → B ifTx = x. Clearly,T(A)∩A ̸ = 0 is a necessary (but not sufficient) condition for the existence of a fixed point of T. If T(A) ∩ A = 0, then d(x, Tx) > 0 for all x ∈ A that is, the set of fixed points of T is empty. In a such situation, one often attempts to find an ele...
متن کاملCommon best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings
In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.
متن کاملCoincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2019
ISSN: 1687-1812
DOI: 10.1186/s13663-019-0667-2